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ABSTRACT
Color deconvolution aims at separating multi-stained images into
single stained ones. In digital histopathological images, true stain
color vectors vary between images and need to be estimated to ob-
tain stain concentrations and separate stain bands. These band im-
ages can be used for image analysis purposes and, once normalized,
utilized with other multi-stained images (from different laboratories
and obtained using different scanners) for classification purposes. In
this paper we propose the use of Super Gaussian (SG) priors for each
stain concentration together with the similarity to a given reference
matrix for the color vectors. Variational inference and an evidence
lower bound are utilized to automatically estimate all the latent vari-
ables. The proposed methodology is tested on real images and com-
pared to classical and state-of-the-art methods for histopathological
blind image color deconvolution.

Index Terms— Blind Color Deconvolution, Histopathological
Images, Variational Bayes, Super Gaussian

1. INTRODUCTION

Histopathological tissues are usually stained with a combination of
stains that binds to specific proteins on the tissue. Hematoxylin and
Eosin (H&E) is one of the most commonly used combination of
stains. Hematoxylin stains cell nuclei while eosin stains cytoplasm
and extracellular matrix components [5]. In digital brightfield mi-
croscopy, stained slides are then scanned to obtain high resolution
Whole-Slide Images (WSI). Since the analysis of these images is
very time consuming and requires a lot of effort, computer-aided di-
agnosis (CAD) systems have become a valuable ally for pathologists.
These systems frequently make use of the information provided by
the different stains separately [12]. The separation of the stains in a
WSI is known as Color Deconvolution (CD) and aims at estimating
each stain concentration at each pixel location. Usually, the color
spectral properties of each stain are also unknown since they vary
from image to image. Color variations have a wide range of ori-
gins: different scanners, stain manufactures, or staining procedures,
among others. They create inter- and intra-laboratory differences.
Blind Color Deconvolution (BCD) techniques estimate image spe-
cific stain color-vectors together with stain concentrations.

Several CD methods have been proposed (see [14] for a review).
Ruifrok et al. [15] proposed one of pioneer works. Non-negative
Matrix Factorization (NMF) [12,18,20], Singular Value Descompo-
sition (SVD) [10, 11] and Independent Component Analysis (ICA)
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[1, 2, 17] have been applied to CD. Deep learning CD methods have
also been recently proposed [8, 16, 21].

This paper contributes to the field with a general probabilistic
framework to BCD. In [6, 7], a prior on the color-vectors, favouring
similarity to some reference stain color-vectors, as well as a smooth-
ness Simultaneous Autoregresive (SAR) prior model on each stain
concentrations was used. As the SAR prior tends to oversmooth the
edges of the image structures, the use of a Total Variation (TV) prior
on each stain was proposed in [19]. Here we propose the use of
Super Gaussian (SG) distributions as priors for BCD. SGs include
distributions like lp or log distributions which have proven to be
very powerful prior models to induce sparsity in Bayesian Blind De-
convolution problems [3, 22]. They are always associated to energy
functions with very interesting sparse properties. Furthermore, their
inference procedure is easily carried out, as shown in section 3.

The rest of the paper is organized as follows: in section 2
the problem of BCD is mathematically formulated. Following the
Bayesian modelling and inference, in section 3 we propose a fully
Bayesian method for the estimation of the concentrations and the
color-vector matrix. In section 4, the proposed method is evaluated
and its performance is compared with other classical and state-of-
the-art CD methods. Finally, section 5 concludes the work.

2. PROBLEM FORMULATION

Digital brightfield microscopes usually store a stained histological
specimen’s slide as an RGB color image of size M×N , represented
by the MN×3 matrix, I. Each color plane is stacked into a MN×1
column vector ic = (i1c, . . . , iMNc)

T, c ∈ {R,G,B}. Each value
iic represents the transmitted light on color band c ∈ {R,G,B} for
the pixel i of the slide. However, for stain deconvolution is usual to
work in the Optical Density (OD) space, where the Beer-Lamberth
law, for a slide stained with ns stains, establishes that

YT = MCT +NT , (1)

where Y ∈ R
MN×3 is the observed OD image with three OD chan-

nels, i.e., Y = [yR yG yB ] and each channel yc ∈ R
MN×1 is de-

fined as yc = − log10
(
ic/i

0
c

)
, where i0c denotes the incident light.

The division operation and log10(·) function are computed element-
wise. M ∈ R

3×ns is the color-vector matrix, C ∈ R
MN×ns is

the stain concentration matrix and N ∈ R
MN×3 is a random matrix

with i.i.d. zero mean Gaussian components with variance β−1.

�����������	���
����
�	���������	�	������ �����	�	�

Authorized licensed use limited to: Northwestern University. Downloaded on November 16,2020 at 03:07:03 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Some choices for the penalty function
Label ρ(s) ρ′(s)/|s|
�p , 0 < p ≤ 1 1

p
|s|p |s|p−2

log log(ε+ |s|) (ε+ |s|)−1|s|−1

BCD techniques seek to estimate the stain concentration matrix.

C =

⎡
⎢⎣

c11 . . . c1ns

...
. . .

...
cMN1 . . . cMNns

⎤
⎥⎦ =

⎡
⎢⎣

cT1,:
...

cTMN,:

⎤
⎥⎦ =

[
c1 . . . cns

]
, (2)

with the i-th row cTi,: = (ci1, . . . , cins), i = 1, . . . ,MN , represent-
ing the contribution of each stain to the i-th Y pixel value, yi, and
the s-th column cs = (c1s, . . . , cMNs)

T, s ∈ {1, . . . , ns}, rep-
resenting the concentrations of the s-th stain. BCD techniques also
estimate the specific color of each stain, represented by the color-
vector matrix M ∈ R

3×ns where each column ms in matrix M is
a unit �2-norm stain color-vector containing the relative RGB color
composition of the corresponding stain in the OD space.

In the following section we use Bayesian modeling and infer-
ence to estimate both C and M.

3. BAYESIAN MODELLING AND INFERENCE

Following the degradation model in (1), we have

p(Y|C,M;β) =
MN∏
i=1

p(yi,:|M, ci,:)

=
MN∏
i=1

N (yi,:|Mci,:, β
−1I3×3) (3)

Bayesian methods start with a prior distribution on the un-
knowns. In this paper we adopt as priors SG distributions for the
stain concentration in order to induce sparsity.

p(C;α) =
L∏

ν=1

ns∏
s=1

p(cνs;ανs)

∝
L∏

ν=1

ns∏
s=1

MN∏
i=1

exp [−ανsρ(cνs(i))] , (4)

with ανs > 0. In (4) cνs = Dνcs, where {Dν}Lν=1 is a set of
L high-pass filters. For p(cνs;ανs) in (4) to be SG ρ(.) has to be
symmetric around zero and the function ρ(

√
s) increasing and con-

cave for s ∈ (0,∞). This condition is equivalent to ρ′(s)/s being
decreasing on (0,∞), and allows ρ to be represented as

ρ (cνs(i)) = inf
ηνs(i)>0

1

2
ηνs(i) cν

2
s(i) − ρ∗

(
1

2
ηνs(i)

)
(5)

⇒ ρ (cνs(i)) ≤ L (cνs(i), ηνs(i))

=
1

2
ηνs(i) cν

2
s(i)− ρ∗

(
1

2
ηνs(i)

)
(6)

where inf denotes the infimum, ρ∗ (·) is the concave conjugate of
ρ(·) and ηνs = {ηνs(i)}MN

i=1 are positive parameters. The relation-
ship dual to (5) is given by [13]

ρ∗
(
1

2
ηνs(i)

)
= inf

cνs(i)

1

2
ηνs(i) cν

2
s(i)− ρ (cνs(i)) . (7)

Table 1 shows some penalty functions, corresponding to SG distri-
butions (see [3] for additional energy functions associated to SG dis-
tributions). The use of different penalty functions will allow us to
obtain different levels of sparsity on the concentration differences at
neighbouring pixels. Notice that ideally, each stain fixes itself only
and completely to certain proteins on the tissue, making the stain
concentration differences at neighbouring pixels sparse [18].

For the unknown color-vector matrix M = [m1, . . . ,mns ] we
incorporate as prior knowledge similarity to a reference color-vector
matrix M = [m1, . . . ,mns

] using

p(M;γ) =

ns∏
s=1

p(ms; γs) ∝
ns∏
s=1

exp

(
−1

2
γs‖ms −ms‖2

)
,

(8)

where γs, s = 1, . . . , ns, controls our confidence on the accuracy of
ms.

With all these ingredients, we define the joint probability distri-
bution as

p(Y,C,M;β,α,γ) =p(M;γ)p(Y|C,M;β)

×
L∏

ν=1

ns∏
s=1

p(cνs;ανs) . (9)

Following the Bayesian paradigm, inference will be based on
the posterior distribution p(Θ|Y;β,α,γ) with Θ = {C,M} the
set of all unknowns. In this paper we use the mean-field variational
Bayesian model [4] to approximate p(Θ|Y;β,α,γ) by the distri-
bution q(Θ) of the form q(Θ) =

∏ns
s=1 q(ms)

∏L
ν=1 q(cνs) that

minimizes the Kullback-Leibler divergence [9] defined as

KL (q(Θ) || p(Θ|Y)) =

∫
q(Θ) log

q(Θ)

p(Θ,Y)
dΘ + log p(Y).

(10)

The Kullback-Leibler divergence is always non negative and equal
to zero if and only if q(Θ) = p(Θ|Y).

Even with this factorization, the SG prior for Cν hampers the
evaluation of this divergence, but the quadratic bound for ρ in (6)
allows us to bound the prior in (4) with a Gaussian form

p (cνs(i);ανs) ≥ exp[−ανsL(cνs(i), ηνs(i))], ∀ηνs(i) > 0 .
(11)

We then define Mν(C,ην ;αν) =
∏

s Mνs(cνs,ηνs;ανs) where

Mνs(cνs,ηνs|ανs) =

MN∏
i=1

exp [−ανsL(cνs(i), ηνs(i))] (12)

and

F(Θ,U,Y) = p(M;γ)p(Y|C,M;β)

L∏
ν=1

Mν(C,ην ;αν)

(13)

to obtain the inequality log p(Θ,Y) ≥ log F(Θ,U,Y).
Utilizing the lower bound F(Θ,U,Y) for the joint probability

distribution in (10) we minimize KL(q(Θ) ||F(Θ,U ,Y) instead
of KL (q(Θ) || p(Θ|Y)).

As shown in [4], for each unknown θ ∈ Θ, q(θ) will have the
form

q(θ) ∝ exp 〈log p(Y,C,M)〉q(Θ\θ) , (14)

where Θ\θ represents all the variables in Θ except θ and 〈·〉q(Θ\θ)
denotes the expected value calculated using the distribution q(Θ\θ).
When point estimates are required θ̂ = 〈θ〉q(θ) is used.
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3.1. Concentration Update:

Defining the contribution of the s-th band

e−s
i,: = yi,: −∑

k �=s 〈cik〉 〈mk〉 and

z−s
i = 〈ms〉T e−s

i,: , i = 1, . . . ,MN, (15)

we can easily show that

〈log p(y,C,M;β,α,γ)〉q(Θ\cs) =

− β

2

(
−2cTs z

−s+ ‖ cs ‖2 〈‖ ms ‖2〉)
−

∑
ν

ανs

2
cTs D

T
ν diag(ηνs)Dνcs + const (16)

q(cs) = N (cs| 〈cs〉 ,Σcs) , where

Σ−1
cs = β

〈‖ ms ‖2〉 IMN×MN +
∑
ν

ανsD
T
ν diag(ηνs)Dν

(17)

〈cs〉 = βΣcsz
−s . (18)

3.2. Color-Vector Update:

In a similar way, using (15), we calculate the distribution of ms,

〈log p(y,C,M|β,α,γ)〉q(Θ\ms)
=

− β

2

(
‖ ms ‖2

MN∑
i=1

〈
c2is

〉− 2mT
s

MN∑
i=1

〈cis〉 e−s
i,:

)

− 1

2
γs ‖ ms −ms ‖2 + const, (19)

which produces

q(ms) = N (ms| 〈ms〉 ,Σms) , (20)

where

Σ−1
ms

=

(
L∑

ν=1

βν

MN∑
i=1

〈
c2νis

〉
+ γs

)
I3×3,

〈ms〉 =Σms

(
L∑

ν=1

βν

MN∑
i=1

〈cνis〉 e−s
νi,: + γsms

)
. (21)

Notice that 〈ms〉 may not be a unitary vector even if ms is. We can
always replace 〈ms〉 by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms by Σms/ ‖
〈ms〉 ‖2.

3.3. Variational Parameters Update:

To estimate the η matrix, we need to solve, for each s ∈ {1, . . . , ns},
ν ∈ {1, . . . , L} and i ∈ {1, . . . ,MN}

η̂νs(i) = arg min
ηνs(i)

〈L (cνs(i), ηνs(i))〉q(cs)

= arg min
ηνs(i)

1

2
ηνs(i)uν

2
s(i) − ρ∗

(
1

2
ηνs(i)

)
(22)

where uνs(i) =
√〈cν2

s(i)〉.
Since

ρ∗(
η̂νs(i)

2
) = min

x

1

2
η̂νs(i)x

2 − ρ(x) (23)

whose minimum is achieved at x = uνs(i), we have, differentiating
the right hand side of the above equation with respect to x,

η̂νs(i) = ρ′(uνs(i))/uνs(i). (24)

3.4. Calculating the concentration covariance matrices:

The matrix Σcs must be explicitly calculated to find its trace and
also η̂νs(i). However, since its calculation is very intense, we pro-
pose the following approximation of the covariance matrix. We first
approximate diag(ηνs) using

diag(ηνs) ≈ z(ηνs)I, (25)

where z(ηνs) is calculated as the mean of the values in the diagonal.
We then use the approximation

Σ−1
cs ≈ β

〈‖ ms ‖2〉 IMN×MN +
∑
ν

ανsz(ηνs)D
T
ν Dν = B.

Finally we have

〈
cν

2
s(i)

〉 ≈ (〈cνs(i)〉)2 + 1

MN
tr
[
B−1DT

ν Dν

]
.

Algorithm 1 Variational Bayesian SG Blind CD
Require: Observed image I, reference (prior) color-vector matrix
M, β, ∀s γs and αν,s ∀ν.
Obtain the OD image Y from I and set 〈ms〉(0) = ms, Σ(0)

ms =

0, Σ(0)
cs = 0, 〈cs〉(0), ∀s = 1, . . . , ns, from the matrix C ob-

tained as CT = M+YT, with M+ the Moore-Penrose pseudo-
inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Using 〈cs〉(n−1) and Σ

(n−1)
cs ∀s, update the new variational

parameters η̂(n)
νs from (24) ∀ν.

3. Using 〈cs〉(n−1), Σ(n−1)
cs and 〈ms〉(n−1) update the color-

vectors Σ(n)
ms and 〈ms〉(n) from (21), ∀s.

4. Using 〈ms〉(n), Σ(n)
ms and η̂

(n)
νs ∀ν update the concentrations

Σ
(n)
cs and 〈cs〉(n) from (17) and (18), ∀s.

end while
Output the color-vector m̂s = 〈ms〉(n) and the concentrations
ĉs = 〈cs〉(n).

3.5. Proposed Algorithm

Based on the previous derivations, we propose the Variational
Bayesian SG Blind Color Deconvolution in Algorithm 1. The
linear equations problem in (18), used in step 3 of Alg. 1, has been
solved using the Conjugate Gradient approach. Finally, from Alg. 1,
an RGB image of each separated stain, Îseps , can be obtained as
(Îseps )T = exp10 (−m̂sĉ

T
s ).

4. EXPERIMENTAL RESULTS

We compare the proposed approach with classical and state-of-
the-art CD methods using the Warwick Stain Sçeparation Bench-
mark (WSSB) in [2]. WSSB includes 24 H&E stained images
of breast, colon and lung tissues whose ground truth stain color-
vector matrices, MGT , were manually selected based on biological
structures. The ground truth concentrations were obtained using
CT

GT = M+
GTY

T. An observed colon image is shown in Fig. 1a
and its ground truth RGB separation is depicted in Fig. 1b.

The following parameter values β = 6000 and γs = 1020 for
s = 1, 2 have been used for all images. Two penalty functions from

���	
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a) Observed H&E image b) Ground truth separated c) Ruifrok’s method [15] d) Macenko’s method [10] e) Vahadane’s method [18]

f) Alsubaie’s method [2] g) Hidalgo-Gavira’s method [6] h) Vega’s method [19] i) Proposed log prior j) Proposed �1 prior

Fig. 1. Colon observed H&E image from the WSSB dataset in [2], its ground truth separated E-only and H-only images and results for the
competing and proposed methods. Eosin and hematoxylin separations are presented in the left and right hand side of each image, respectively.

Table 2. PSNR and SSIM for the different methods on the WSSB dataset [2].
Image Stain Ruifrok’s Macenko’s Vahadane’s Alsubaie’s Hidalgo-Gavira’s Vega’s Proposed Proposed

method [15] method [10] method [18] method [2] method [6] method [19] log prior �1 prior
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Colon H 22.27 0.8141 23.91 0.8095 25.83 0.8851 21.11 0.7241 28.57 0.9542 28.62 0.9544 28.47 0.9511 29.00 0.9638
E 20.70 0.7456 21.55 0.6365 26.29 0.8904 21.94 0.8540 27.58 0.9139 27.60 0.9161 27.55 0.9171 28.38 0.9414

Breast H 15.27 0.6215 26.24 0.9552 25.46 0.9239 24.60 0.8068 28.81 0.9528 29.14 0.9560 29.44 0.9513 30.50 0.9751
E 17.66 0.7644 23.62 0.9336 27.68 0.9550 25.92 0.9380 26.60 0.9464 26.76 0.9492 26.74 0.9444 27.71 0.9645

Lung H 22.47 0.7987 19.52 0.7389 25.87 0.8912 20.62 0.5551 32.91 0.9763 33.10 0.9757 32.39 0.9681 35.21 0.9898
E 22.05 0.7734 18.09 0.5088 25.53 0.8195 23.95 0.8939 30.77 0.9306 31.02 0.9353 30.61 0.9393 33.07 0.9654

Mean H 20.00 0.7448 23.22 0.8345 25.72 0.9100 22.11 0.6953 30.10 0.9611 30.29 0.9621 30.10 0.9568 31.57 0.9762
E 20.14 0.7611 21.08 0.6930 26.50 0.8883 23.94 0.8953 28.32 0.9303 28.46 0.9336 28.34 0.9347 29.72 0.9571

Table 1 have been used: log and �1. First order horizontal and ver-
tical differences have been used as filters in (4), so L = 2. For
ν = 1, 2 the value αν,s = 1.0 for s = 1, 2 have been used with
the log prior and the values αν,1 = 0.02 and αν,2 = 0.01 with
the �1 prior. Algorithm 1 was run until the criterion ‖ 〈cs〉(n) −
〈cs〉(n−1) ‖2/ ‖ 〈cs〉(n) ‖2 < 10−3 was met by both stains, that is,
s = 1, 2. Since different tissues may have different color character-
istics, the reference color-vector matrix M was obtained by select-
ing, by non-medical experts a single pixel containing mainly hema-
toxylin and another pixel containing mainly eosin from each type of
breast, colon and lung tissues.

We compare our log and �1 models to the methods in [2,6,10,15,
18, 19]. For all the competing algorithms, parameters were selected
following the recommendations in the original paper or the reference
software freely available. The resulting H-only and E-only images
were compared both visually and numerically by means of the Peak
Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) met-
rics. Numerical results, presented in Table 2, show that the proposed
�1 method produces higher PSNR and SSIM values than the com-
peting models. The proposed log method produces similar results
to the method in [19]. The separated H- and E-only images from
the observed image in Fig. 1a are shown in Fig. 1c-j. The proposed
method and the methods in [6,18,19] produce colors very similar to
the ground truth separation in Fig. 1b although the new method and
the one in [19] produce sharper images than the method in [6] and
richer details than the method in [18].

The obtained results clearly show an advantage when using the

�1 method, meaning that this prior captures the real behaviour of the
dyes on the tissue. As we have already indicated, each stain fixes it-
self only and completely to certain proteins on the tissue, making the
stain concentration differences at neighbouring pixels sparse [18].
However, the experiments show that the differences are not as sparse
as expected. The �1 prior, with a lower kurtosis than log prior, al-
lows to keep more non-zero values. This makes the �1 prior a good
choice, as it induces sparsity in a softer way than the log prior.

5. CONCLUSIONS

In this work we have presented the use of Super Gaussian prior mod-
els for Blind Color Deconvolution. The use of the SG family induces
sparsity on the differences of stain concentrations at neighbouring
pixels. This is a desired quality during the staining process and a the-
oretical feature of the stained tissue. The variety of SG distributions
available allows us to explore a range of possible sparse solutions
within a common inference, keeping an easy procedure. In this work
we explore two of the possible penalty functions, �1 and log. We find
that the �1 prior, which has a more moderated peak, captures better
the real distribution of the stains present in the images. The softer
sparsity induction leads us to a blind color deconvolution method
that outperforms all the methods compared with. Future work using
this promising methodology includes model parameter estimation,
and the use of this new blind CD method as preprocessing for WSI
classification.
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