Abstract—In digital pathology blind color deconvolution techniques separate multi-stained images into single stained bands. These band images are then used for image analysis and classification purposes. This paper proposes the use of Super Gaussian priors for each stain band together with the similarity to a given reference matrix for the color vectors. Variational inference and an evidence lower bound are then utilized to automatically estimate the latent variables and model parameters. The proposed methodology is tested on real images and compared to classical and state-of-the-art methods for histopathological blind image color deconvolution. Its use as a preprocessing step in prostate cancer classification is also analysed.

Index Terms—Blind color deconvolution, histopathological images, variational Bayes, Super Gaussian

I. INTRODUCTION

Histopathological tissues are frequently stained with a combination of stains that binds to specific proteins on the tissue, being Hematoxylin and Eosin (H&E) the most commonly used combination. Stained slides are then scanned to obtain high resolution Whole-Slide Images (WSI). Since the analysis of these images is very time consuming and requires a lot of effort, computer-aided diagnosis (CAD) systems have become a valuable ally for pathologists. CADs frequently make use of the different stains separately [1]. The separation of the stains in a WSI is known as Color Deconvolution (CD) and estimates each stain concentration at each pixel location.

Usually, the color spectral properties of each stain are also unknown since they vary from image to image. Color variations have a wide range of origins: different scanners, stain manufactures, or staining procedures, among others. They create inter- and intra-laboratory differences. Blind Color Deconvolution (BCD) techniques estimate image specific stain color-vectors together with stain concentrations. In other fields, this problem is referred as blind unmixing [2].

Several CD methods have been proposed (see [3] for a review). Ruifrok et al. [4] proposed one of the pioneer works. Non-negative Matrix Factorization (NMF) [1], [5]. Singular Value Decomposition (SVD) [6], [7] and Independent Component Analysis (ICA) [8], [9] have been applied to CD. Deep learning methods have also been recently proposed [10]–[12].

This paper contributes to the field with a general probabilistic framework to BCD. In [13]–[15], a prior on the color-vectors, favouring similarity to some reference stain color-vectors, as well as a smoothness Simultaneous Autoregresive (SAR) prior model on each stain concentrations was used. As the SAR prior tends to oversmooth the edges of the image structures, the use of a Total Variation (TV) prior on each stain was proposed in [16], extended in [17]. Improving the sparsity options of the TV prior, here we propose the use of Super Gaussian (SG) distributions as priors for BCD. SGs include distributions like l_p or log distributions which have proven to be very powerful prior models to induce sparsity in Bayesian Blind Deconvolution problems [18], [19]. They are always associated to energy functions with very interesting sparse properties. Furthermore, their inference procedure is easily carried out, as shown in section III.

The rest of the paper is organized as follows: in section II the problem of BCD is mathematically formulated. Following the Bayesian modelling and inference, in section III we propose a fully Bayesian method for the estimation of the concentrations and the color-vector matrix. In section IV, the proposed method is evaluated and its performance is compared with classical and state-of-the-art CD methods. Finally, section V concludes the work.

II. PROBLEM FORMULATION

Digital brightfield microscopes usually store a stained histological specimen’s slide as an RGB color image of size $M \times N$, represented by the $MN \times 3$ matrix, \mathbf{I}. Each color plane is stacked into a $MN \times 1$ column vector $\mathbf{i}_c = (i_{1c}, \ldots, i_{MNc})^T, c \in \{R, G, B\}$. Each value i_{ic} represents the transmitted light on color band $c \in \{R, G, B\}$ for the pixel i of the slide. However, for stain deconvolution is usual to work in the Optical Density (OD) space, where the Beer-Lambert law, for a slide stained with n_s stains, establishes

$$\mathbf{Y}^T = \mathbf{M}^T \mathbf{C}^T + \mathbf{N}^T,$$

where $\mathbf{Y} \in \mathbb{R}^{MN \times 3}$ is the observed OD image with three OD channels, i.e., $\mathbf{Y} = [\mathbf{y}_R \mathbf{y}_G \mathbf{y}_B]$ and each channel $\mathbf{y}_c \in \mathbb{R}^{MN \times 1}$.
In the following section we use Bayesian modeling and inference to estimate both C and M.

III. BAYESIAN MODELING AND INFERENCES

Following the degradation model in (1), we have

\[p(Y | C, M, \beta) = \prod_{i=1}^{MN} N(y_{i,:} | Mc_{i,:}, \beta^{-1}I_{3\times3}). \]

Bayesian methods start with a prior distribution on the unknowns. In this paper we adopt as priors SG distributions for the stain concentration

\[p(C | \alpha) = \prod_{\nu=1}^{J} \prod_{s=1}^{n_{s}} P \left(Z(\alpha_{\nu s}) \exp \left[-\alpha_{\nu s} \rho(c_{\nu s}(i)) \right] \right) \]

with \(\alpha_{\nu s} > 0 \). In (3) \(c_{\nu s} = D_{\nu}c_{s} \), where \(\{D_{\nu}\}_{\nu=1}^{J} \) is a set of \(J \) high-pass and \(Z(\alpha_{\nu s}) \) is a partition function. For \(p(c_{\nu s} | \alpha_{\nu s}) \) in (3) to be SG \(\rho() \) has to be symmetric around zero and the function \(p(\sqrt{s}) \) increasing and concave for \(s \in (0, \infty) \). This condition is equivalent to \(\rho'(s) / s \) being decreasing on \((0, \infty) \), and allows \(\rho() \) to be represented as

\[\rho(c_{\nu s}(i)) = \inf_{\eta_{\nu s}(i) = 0} L \left(c_{\nu s}(i), \eta_{\nu s}(i) \right) \]

where \(L \left(c_{\nu s}(i), \eta_{\nu s}(i) \right) = \frac{1}{2} \eta_{\nu s}(i) c_{\nu s}(i) - \rho^*(\frac{1}{2} \eta_{\nu s}(i)) \), inf denotes infimum and \(\rho^*(\cdot) \) is the concave conjugate of \(\rho(\cdot) \) and \(\rho^*(\cdot) = \{\eta_{\nu s}(i)\}_{i=1}^{MN} \) are positive parameters. The relationship dual to (4) is given by [20]

\[\rho^*(\frac{1}{2} \eta_{\nu s}(i)) = \inf_{c_{\nu s}(i) = 0} \frac{1}{2} \eta_{\nu s}(i) c_{\nu s}(i) - \rho(c_{\nu s}(i)). \]

Table I shows some penalty functions, corresponding to SG distributions (see [18] for additional energy functions associated to SG distributions).

For the unknown color-vector matrix \(M = [m_1, \ldots, m_{n_s}] \) we incorporate similarity to a reference color-vector matrix [2] \(M = [\hat{m}_1, \ldots, \hat{m}_{n_s}] \) into its prior model as

\[p(M | \gamma) \propto \prod_{s=1}^{n_s} \gamma_s^3 \exp \left(-\frac{1}{2} \gamma_s \| m_s - \hat{m}_s \|^2 \right), \]

where \(\gamma_s, s = 1, \ldots, n_s, \) controls our confidence on the accuracy of \(m_s \).

Then, we define the joint probability distribution as

\[p(Y, C, M, \beta, \alpha, \gamma) = p(M | \gamma) p(Y | C, M, \beta) p(\beta) \]

\[\times \prod_{\nu=1}^{J} \prod_{s=1}^{n_s} p(c_{\nu s} | \alpha_{\nu s}) p(\alpha_{\nu s}), \]

where constant hyperpriors \(p(\gamma), p(\beta) \) and \(p(\alpha_{\nu s}) \) on the model hyperparameters have been included.

Following the Bayesian paradigm, inference will be based on the posterior distribution \(p(\Theta | Y) \) with \(\Theta = \{Y, C, M, \beta, \alpha, \gamma\} \) the set of all unknowns. In this paper we use the mean-field variational Bayesian model [21] to approximate \(p(\Theta | Y) \) by the distribution \(q(\Theta) \) of the form \(q(\Theta) = \prod_{\nu=1}^{n_s} q(\alpha_{\nu s}) \prod_{i=1}^{J} q(c_{\nu s}) \) that minimizes the Kullback-Leibler (KL) divergence [22] defined as

\[KL(q(\Theta) || p(\Theta | Y)) = \int q(\Theta) \log \frac{q(\Theta)}{p(\Theta | Y)} d\Theta + \log p(Y). \]

Even with this factorization, the SG prior for \(C_\nu \) hampers the evaluation of this divergence, but the quadratic bound for \(\rho \) allows us to bound the prior in (3) with a Gaussian form

\[p(c_{\nu s}(i) | \alpha_{\nu s}) \geq \mathbb{N}(c_{\nu s}(i)), \eta_{\nu s}(i)) \]

\[\forall \eta_{\nu s}(i) > 0. \]

Then we define

\[M_\nu(C, \eta_{\nu s} | \alpha_{\nu s}) = \prod_{s=1}^{n_s} \prod_{i=1}^{MN} Z(\alpha_{\nu s}) \exp \left[-\alpha_{\nu s} L\left(c_{\nu s}(i), \eta_{\nu s}(i) \right) \right] \]

\[= F(\Theta, Y) = p(M, \gamma)p(\gamma)p(Y | C, M, \beta)p(\beta) \]

\[\times \prod_{\nu} M_\nu(C, \eta_{\nu s} | \alpha_{\nu s}) p(\alpha_{\nu s}), \]

to obtain the inequality \(\int q(\Theta) \log F(\Theta, Y) \)

Utilizing the lower bound \(\int q(\Theta) \log F(\Theta, Y) \) for the joint probability distribution in (8) we minimize \(KL(q(\Theta) || F(\Theta, Y)) \) instead of \(KL(q(\Theta) || p(\Theta | Y)) \).

As shown in [21], for each unknown \(\theta \in \Theta, q(\theta) \) will have the form

\[q(\theta) \propto \exp \{\log F(\Theta, Y)|q(\Theta \setminus \theta)\}, \]

where \(\Theta \setminus \theta \) represents all the variables in \(\Theta \) except \(\theta \) and \(\langle \rangle_{q(\Theta \setminus \theta)} \) denotes the expected value calculated using the distribution \(q(\Theta \setminus \theta) \). When point estimates are required \(\hat{\theta} = \langle \theta \rangle_{q(\Theta \setminus \theta)} \) is used.

Label	\(\rho(\theta) \)	\(\rho'(\theta) /	\theta	\)		
\(\ell_p, 0 < p \leq 1 \)	\(s	^p\)	\(s	^{p-2}\)
1) Concentration Update: Defining
\[
e_i^{s} = y_i = \sum_{k \neq s} \langle c_{sk} \rangle m_k,
\]
and using eq. (12) we can easily show that \(q(c_s) = \mathcal{N}(c_s | \langle c_s \rangle, \Sigma_{c_s}) \), where
\[
\Sigma_{c_s}^{-1} = \beta (\| m_s \|^2) I_{MN \times MN} + \sum_{v} \alpha_{v}s D_v^{T} \text{diag}(\eta_{v}s) D_v
\]
\[
\langle c_s \rangle = \beta \Sigma_{c_s}^{-1} z^{-s}.
\] (13)

2) Color-Vector Update: In a similar way, using (13), we can show that \(q(m_s) = \mathcal{N}(m_s | \langle m_s \rangle, \Sigma_{m_s}) \), where
\[
\Sigma_{m_s}^{-1} = \left(\sum_{v=1}^{V} \beta_v \sum_{i=1}^{N} \langle c_{vis}^2 \rangle + \gamma_s \right) I_{3 \times 3},
\]
\[
\langle m_s \rangle = \Sigma_{m_s} \left(\sum_{v=1}^{V} \beta_v \sum_{i=1}^{N} \langle c_{vis} \rangle e_i^{s} + \gamma_s m_s \right). \] (15)

Notice that \(\langle m_s \rangle \) may not be a unitary vector even if \(m_s \) is. We can always replace \(\langle m_s \rangle \) by \(\langle m_s \rangle / \| \langle m_s \rangle \| \) and \(\Sigma_{m_s} \) by \(\Sigma_{m_s} / \| \langle m_s \rangle \|^2 \).

3) Variational Parameter Update: To estimate the \(\eta \) matrix, we need to solve, for each \(s \in \{1, \ldots, n_s\}, \nu \in \{1, \ldots, L\} \) and \(i \in \{1, \ldots, MN\} \)
\[
\hat{\eta}_{\nu s}(i) = \arg \min_{\eta_{\nu s}(i)} \langle J_0 (c_{\nu s}(i), \eta_{\nu s}(i)) \rangle_{q(c_s)} \]
\[
= \arg \min_{\eta_{\nu s}(i)} \left(\frac{1}{2} \eta_{\nu s}(i) u_{\nu s}^2(i) - \rho^\ast \left(\frac{1}{2} \eta_{\nu s}(i) \right) \right) \] (16)
where \(u_{\nu s}(i) = \sqrt{\langle c_{\nu s}^2 \rangle} \). Since
\[
\rho^\ast \left(\frac{\hat{\eta}_{\nu s}(i)}{2} \right) = \min_{x} \frac{1}{2} \hat{\eta}_{\nu s}(i) x^2 - \rho(x) \] (17)
whose minimum is achieved at \(x = u_{\nu s}(i) \), we have, differentiating the right-hand side of (17) with respect to \(x \),
\[
\hat{\eta}_{\nu s}(i) = \rho^\ast (u_{\nu s}(i)) / u_{\nu s}(i). \] (18)

4) Parameter Update: The estimates of the noise and color- vectors parameters are obtained as
\[
\hat{\beta}^{-1} = \text{tr} \left((Y^T - MC^T)(Y^T - MC^T)^T \right) q(\Theta), \] (19)
\[
\hat{\gamma}_{\ast}^{-1} = \text{tr} \left((m_s - \bar{m}_s)(m_s - \bar{m}_s)^T \right) \] (20)

From (12) we obtain the following distribution for \(\alpha_{\nu s} \)
\[
q(\alpha_{\nu s}) = \text{const} + \sum_{i=1}^{MN} \log Z(\alpha_{\nu s}) \exp \left[-\alpha_{\nu s} \rho(c_{\nu s}(i)) \right]. \] (21)

Using the mode of this distribution as the \(\alpha_{\nu s} \) estimate results in the following equation for \(\hat{\alpha}_{\nu s} \)
\[
\frac{\partial Z(\hat{\alpha}_{\nu s})}{\partial \hat{\alpha}_{\nu s}} = \text{tr} \left(D_v^T D_v \right) \frac{(c_s c_s^T)^{-1}}{MN}. \] (22)

\begin{algorithm}[H]
\caption{Variational Bayesian SG Blind CD}
\begin{algorithmic}
\Require Observed image \(I \) and reference (prior) color-vector matrix \(M \).
\Ensure Obtained OD image \(Y \) from \(I \) and set \(\langle m_s \rangle^{(0)} = m_s, \Sigma_{m_s}^{(0)} = 0, \Sigma_{c_s}^{(0)} = 0, \langle c_s \rangle^{(0)} \forall s = 1, \ldots, n_s \), from the matrix \(C \) obtained as \(C^T = M^T Y^T \), with \(M^T \) the Moore-Penrose pseudo-inverse of \(M \) and \(n = 0 \).
\While {convergence criterion is not met}
\State Set \(n = n + 1 \).
\State Obtain \(\beta^{(n)}, \gamma^{(n)} \) and \(\alpha_{\nu s}^{(n)} \) from (19), (20) and (22).
\State Using \(\langle c_s \rangle^{(n-1)}, \Sigma_{c_s}^{(n-1)} \forall s \), update the new variational parameters \(\hat{\eta}_{\nu s}^{(n)} \) from (18) \forall \nu, s.
\State Using \(\langle c_s \rangle^{(n-1)}, \Sigma_{c_s}^{(n-1)} \) and \(\langle m_s \rangle^{(n-1)} \) from (15), \forall \nu, s.
\State Using \(\langle m_s \rangle^{(n)}, \Sigma_{m_s}^{(n)} \) and \(\eta_{\nu s}^{(n)} \) \forall \nu update the concentrations \(\Sigma_{c_s}^{(n)} \) and \(\langle c_s \rangle^{(n)} \) from (14), \forall \nu, s.
\EndWhile
\Ensure Output color-vector \(\bar{m}_s = \langle m_s \rangle^{(n)} \) and \(\bar{c}_s = \langle c_s \rangle^{(n)} \).
\end{algorithmic}
\end{algorithm}

The \(\ell_p \) penalty function shown in Table I produces proper priors, for which the partition function can be evaluated, but the log penalty function produces an improper prior. We tackle this problem examining, for \(\alpha_{\nu s} \), the behavior of
\[
Z(\alpha_{\nu s}, K)^{-1} = \int_{-K}^{K} \exp \left[-\alpha_{\nu s} \rho(t) \right] dt \] (23)
and keeping in \(\partial Z(\alpha_{\nu s}) / \partial \alpha_{\nu s} \) the term that depends on \(\alpha_{\nu s} \). This produces for the log prior
\[
\frac{\partial Z(\alpha_{\nu s})}{\partial \alpha_{\nu s}} = (\alpha_{\nu s} - 1)^{-1}. \] (24)

5) Calculating the concentration covariance matrices:.
The matrix \(\Sigma_{c_s} \) must be explicitly calculated to find its trace and also \(\hat{\eta}_{\nu s}(i) \). However, since its calculation is very intense, we propose the following approximation of the covariance matrix. We first approximate \(\text{diag}(\eta_{\nu s}) \) using
\[
\text{diag}(\eta_{\nu s}) \approx z(\eta_{\nu s}) I_l \] (25)
where \(z(\eta_{\nu s}) \) is calculated as the mean of the values in the diagonal. We then use the approximation
\[
\Sigma_{c_s}^{-1} \approx \beta (\| m_s \|^2) I_{MN \times MN} + \sum_{v} \alpha_{\nu s} z(\eta_{\nu s}) D_v^T D_v = B. \]
Finally, we have \(\langle c_{\nu s}^2 \rangle \approx (\langle c_{\nu s} \rangle)^2 + \frac{1}{MN} \text{tr} [B^{-1} D_v^T D_v]. \)

6) Proposed Algorithm: Based on the previous derivations, we propose the Variational Bayesian SG BCD in Algorithm 1. The linear equations problem in (14), used in step 4 of Alg. 1, has been solved using the Conjugate Gradient approach.

IV. EXPERIMENTAL RESULTS

We compare the proposed approach with classical and state-of-the-art CD methods on two different goals that blind color deconvolution methods should achieve: image reconstruction and image classification. For comparison, two SG priors have been utilized, log and \(\ell_1 \). First order horizontal and vertical
differences have been used as filters in (3), so $J = 2$. We compare our models to the methods in [4]–[6], [9], [13], [16]. Further details of each experiment are provided below.

1) Color Deconvolution Experiments: The first experiment was carried out on the Warwick Stain Separation Benchmark (WSSB) in [9]. WSSB includes 24 H&E stained images of breast, colon and lung tissues 2000×2000 whose ground truth stain color-vector matrices, \mathbf{M}_{GT}, were manually selected based on biological structures. The ground truth concentrations were obtained using $\mathbf{C}_{GT}^{T} = \mathbf{M}_{GT}^{T} \mathbf{Y}^{T}$. A breast ground truth RGB separation is depicted in Fig. 1a. The method was run until the criterion $\| (\mathbf{c}_{s}^{(n)} - \langle \mathbf{c}_{s} \rangle)^{(n-1)} \|_2^2 / \| (\mathbf{c}_{s}^{(n)})^{(n)} \|_2^2 < 10^{-3}$ was met by both stains, that is, $s = 1, 2$. Since different tissues may have different color characteristics, the reference color-vector matrix \mathbf{M} was obtained by selecting, by non-medical experts, a single pixel containing mainly hematoxylin and a pixel containing mainly eosin from each type of tissue.

The resulting H-only and E-only images were compared both visually and numerically by means of the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics. Numerical results, presented in Table II, show that the proposed ℓ_1 method produces higher PSNR and SSIM values than the competing methods. The proposed log method produces similar results to the method in [16]. The separated images from the observed image in Fig. 1a are shown in Fig. 1c-j. The proposed method and the methods in [5], [13], [16] produce colors very similar to the ground truth separation in Fig. 1b although the new method and the one in [16] produce sharper images than the method in [13] and richer details than the method in [5].

The obtained results clearly show an advantage when using the ℓ_1 method, meaning that this prior captures the real behaviour of the dyes on the tissue. As we have already indicated, each stain fixes itself only and completely to certain proteins on the tissue, making the stain concentration differences at neighbouring pixels sparse [5]. However, the experiments show that the differences are not as sparse as expected. The ℓ_1 prior, with a lower kurtosis than log prior, allows to keep more non-zero values. This makes the ℓ_1 prior a good choice, as it induces sparsity in a softer way than the log prior.

2) Prostate Cancer Classification Experiments: Finally, the main objective of BCD methods for histopathology is to improve the performance of classification methods. In this section we study how the use of different stain deconvolution methods affects the performance of classifiers. We use the SICAPv1 database, a prostate cancer histopathological database recently presented in [23], that contains 60 WSI (17 benign and 43 pathological). In order to capture complete glands, the images were downsampled to 10x scale and those in the training set were divided into patches of size 1024×1024 pixels with a 50% overlap. The dataset was color deconvolved using the proposed and competing methods. The H&E concentration image in the OD space was used to extract features to be utilized as input to the classifiers. Following [23], we used the concatenation of Local Binary Patterns Variance [24] and Geodesic granulometries features [23]. A set of shallow and deep classifiers were trained with those descriptors and their results were compared. We used Random Forest (RF) [25], Extreme Gradient Boosting (XgBoost) [26], Gaussian Processes (GP) [27] and Deep Gaussian Processes (DGP) [28]. For each classifier, a five-fold cross-validation was applied to compare its performance with each deconvolution method.

The results in III show that the proposed method outperformed almost all the other methods. Only [4], the most extended method for histopathology color deconvolution obtain similar results. However, performance of [4] in reconstruction was the lowest. The SG approach allows us to lead in classification performance without losing fidelity to the image.

V. CONCLUSIONS

This work presented the use of Super Gaussian priors for Blind Color Deconvolution (BCD) automatically estimating the model parameters and examining its use in classification problems. The use of the SG family induces sparsity on the differences of stain concentrations at neighbouring pixels. This is a desired quality during the staining process and a theoretical feature of the stained tissue. The variety of SG distributions available allowed us to explore a range of possible sparse solutions within a common inference, using an easy procedure. This work explored two penalty functions, ℓ_1 and log. On
image classification, both SG priors obtained a high accuracy with all the classifiers. Our method far exceed most of the competing method and even outperformed the most extended method for histophotology color deconvolution [4]. Regarding image reconstruction, we found that the ℓ_1 prior, which has a more moderate peak, captured better the real distribution of the stains in the images. The sharper edges than the obtained in [13] and the softer sparsity induced than [16] takes us to a BCD method that far outperformed all the methods compared with [11].

REFERENCES

TABLE II

PSNR AND SSIM FOR THE DIFFERENT METHODS ON THE WSSB DATASET [9].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon</td>
<td>E</td>
<td>0.9796</td>
<td>0.9805</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
<td>0.9800</td>
</tr>
<tr>
<td>Breast</td>
<td>E</td>
<td>0.9796</td>
<td>0.9805</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
</tr>
<tr>
<td>Lung</td>
<td>E</td>
<td>0.9796</td>
<td>0.9805</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
</tr>
<tr>
<td>Mean</td>
<td>E</td>
<td>0.9796</td>
<td>0.9805</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
<td>0.9796</td>
</tr>
</tbody>
</table>

TABLE III

PERFORMANCE OF THE PROPOSED AND COMPETING DECONVOLUTION METHODS WITH DIFFERENT CLASSIFIERS.

<table>
<thead>
<tr>
<th>Method</th>
<th>RF</th>
<th>GP</th>
<th>XGBoost</th>
<th>DGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruizrok’s</td>
<td>0.9789</td>
<td>0.9855</td>
<td>0.9764</td>
<td>0.9737</td>
</tr>
<tr>
<td>Macenko [6]</td>
<td>0.9315</td>
<td>0.9355</td>
<td>0.9425</td>
<td>0.8802</td>
</tr>
<tr>
<td>Vahadane [5]</td>
<td>0.9222</td>
<td>0.9479</td>
<td>0.9295</td>
<td>0.9420</td>
</tr>
<tr>
<td>Alsubaie [9]</td>
<td>0.9262</td>
<td>0.9442</td>
<td>0.9246</td>
<td>0.9344</td>
</tr>
<tr>
<td>Hidalgo-Gavira [13]</td>
<td>0.9157</td>
<td>0.9542</td>
<td>0.9288</td>
<td>0.8997</td>
</tr>
<tr>
<td>Vega [16]</td>
<td>0.9242</td>
<td>0.9498</td>
<td>0.9294</td>
<td>0.9249</td>
</tr>
<tr>
<td>Prop. ℓ_1 prior</td>
<td>0.9796</td>
<td>0.9842</td>
<td>0.9796</td>
<td>0.9729</td>
</tr>
<tr>
<td>Prop. log prior</td>
<td>0.9796</td>
<td>0.9842</td>
<td>0.9798</td>
<td>0.9723</td>
</tr>
</tbody>
</table>